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a b s t r a c t

The numerical solution of acoustic pulse propagation through dispersive media requires

the inclusion of attenuation and its causal companion, phase velocity. For the case of

propagation in a linear medium, Szabo [Time domain wave equations for lossy media

obeying a frequency power law, Journal of the Acoustic Society of America 96 (1994)

491–500] introduced the concept of a causal convolutional propagation operator that

plays the role of a causal propagation factor in the time domain. The convolutional

operator has been successfully employed in the linear wave equation for both isotropic

and non-isotropic dispersive media. This operator was originally proposed by Szabo to

replace the loss term responsible for attenuation due to thermal conduction and

viscosity of the fluid in the Westervelt equation. The Westervelt equation with a

traditional loss term fails to incorporate the full dispersive characteristics of the

medium, a deficiency which can be removed, at least in principle by replacing the

traditional loss term with the causal convolutional propagation factor. Previously no

comparison has been made between the Westervelt equation with the traditional loss

term and with Szabo’s causal convolutional propagation operator. In this paper we show

numerically that by employing the convolutional propagation operator the full

dispersive characteristics of the media are properly incorporated into the solution,

and that the results can differ significantly from the Westervelt equation with the

traditional loss term. The equations will be solved via the method of finite differences.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

When the medium in which acoustic energy is being propagated is dispersive, causality requires that the propagating
field will be attenuated, and that attenuation will be frequency-dependent. If the source is time limited, i.e. an acoustic
pulse, its frequency content will be appropriately broad, and to accurately treat such a situation the model will have to be
able to take into account this frequency-dependence of the attenuation and phase velocity for the spread of frequencies
contributing to the source. In this case, modeling in the time domain (rather than the frequency domain) is highly
desirable, since it allows for more direct and efficient numerical solution of the appropriate wave equation, and causality is
always fulfilled.

Based on an idea set forth by Blackstock [1] in the context of nonlinear acoustics, Szabo offered a way to include
attenuation and dispersion effects directly in the time domain for both nonlinear [2] and linear propagation [3–5] in linear
media, through the introduction of a causal convolutional propagation operator into the corresponding three-dimensional
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wave equation. By deriving a time domain version [3] of the Kramers–Krönig relations (K–K) [6], he arrived at a general
form for the propagation operator. Szabo’s operator was originally defined in the context of lossy media obeying a
frequency power law attenuation, but Waters et al. [7] showed that Szabo’s approach could be extended to a broader class
of media (as originally suggested by Blackstock), provided the attenuation possesses a Fourier transform in a distributional
sense.

Norton and Novarini [8] clarified the use of the causal convolutional propagation operator and its relationship to the
time domain propagation factor (TDPF) (see Section 3). The time domain propagation factor is directly related to the
dispersive properties (attenuation and dispersion) of the medium. The modified wave equation containing the causal
convolutional propagation operator is rewritten incorporating the time domain propagation factor explicitly. The capability
of the time domain propagation factor to correctly incorporate the dispersive traits of the medium into the linear wave
equation was demonstrated by solving the one-dimensional scalar, inhomogeneous wave equation in a dispersive medium
via a finite-difference-time-domain scheme [8]. Thus, if the frequency-dependence of the attenuation is known, either from
measurement or theoretically and if it possesses a generalized Fourier transform, then the time domain propagation factor,
and hence the corresponding causal convolutional propagation operator, can be obtained. Given the propagation operator,
causal propagation can be modeled directly in the time domain.

Norton and Novarini [9] extended the technique to 2-D non-isotropic media, in which the dispersive effects vary
spatially. Excellent agreement between the FDTD with dispersion and the analytic result was observed for both the forward
and the backscattered field. Enhancements to the numerical scheme included making all difference approximations of the
derivatives (both space and time) fourth-order accurate as well as making the absorbing boundary conditions, utilizing the
complementary operator method (COM) fourth-order accurate [10]. Norton and Novarini [11] have utilized this model to
investigate the scattering from and propagation through bubble clouds in the ocean. Norton and Novarini [12] have also
applied this technique to scattering and propagation in biological tissue, examining the impact that dispersion has on the
backscattered signal. The target media studied consisted of brain, heart, kidney, liver and tendon tissue. Finally Norton
[13,14] extended the technique to include heterogeneous dispersive media, recasting the modified wave equation so that it
had a spatially varying bulk modulus and density.

Previous use of the causal time domain propagation factor has been limited to the linear wave equation. In this paper we
apply this term to the Westervelt equation, which permits realistic inclusion of attenuation (and its causal companion,
phase velocity) and nonlinear effects. Traditionally, when the medium is taken to be a thermoviscous fluid, the Westervelt
equation with a traditional loss term is employed. To this point no comparison has been made between employing the
Westervelt equation with the traditional loss term (Eq. (2)) and that utilizing Szabo’s causal time domain propagation
factor. This paper makes this comparison, numerically, by modeling acoustic propagation with the Westervelt equation
including the causal time domain propagation factor. We will show that this correctly incorporates the full dispersive
characteristics of the medium. Specifically we show that employing the causal time domain propagation factor can produce
results that differ significantly from employing the Westervelt equation with the traditional loss mechanism, which is due
to the fact that the latter fails to take into account the full dispersive characteristics of the medium.

We begin by incorporating dispersive effects into the Westervelt equation for sound propagation in a fluid medium
through the inclusion of the causal time domain propagation factor. The finite-difference formalism is then described, and a
numerical experiment is carried out in one dimension, using the two forms of the Westervelt equation given in Eqs. (2) and
(6), below, that is, with and without the time domain propagation factor. Finally the differences and similarities between
the two approaches are discussed and compared with an analytical solution.

2. Westervelt equation for non-dispersive and dispersive media

The Westervelt equation describing the propagation of finite amplitude sound has the following form [15]:

r2p�
1

c2
0

q2p

qt2
þ

b
r0c4

0

q2p2

qt2
¼ 0, (1)

where p is the acoustic pressure, r0 and c0 are the ambient density and sound speed, b ¼ 1þ ðB=2AÞ is the nonlinearity
coefficient for the fluid, and B=A is the nonlinearity parameter. The first two terms in Eq. (1), the D’Alembertian operator
acting on the acoustic pressure, describe linear lossless wave propagation at the small-signal sound speed. The final term
describes nonlinear distortion of the wave due to finite-amplitude effects.

If the medium is assumed to be a thermoviscous fluid, the Westervelt equation (Eq. (1)) takes the following form [16]:
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The additional term is a loss term, which is due to the thermal conduction and the viscosity of the fluid. Here d is the
diffusivity of sound; in a thermoviscous fluid, the absorption coefficient a is related to d and o ¼ 2pf by

d ¼
2c3

0a
o2

. (3)
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The absorption coefficient is a constant, specific to a single frequency. In the next section we introduce the causal time
domain propagation factor, which incorporates a frequency-dependent attenuation and phase velocity.
3. The causal time domain propagation factor

A brief review of the development of the time domain propagation factor is as follows (see Refs. [4,8] for details).
Assuming that propagation takes place in a lossy linear medium, the propagation can be shown to be governed by a
modified form of Eq. (1). The modification consists of including a causal convolutional propagation operator ðLgðtÞÞ which
controls attenuation and dispersion. It plays the role of a generalized dissipative term in the time domain. The Westerfelt
equation then takes the form

r2p�
1

c2
0

q2p

qt2
þ

1

c0
ðLgðtÞ � pÞ þ

b
r0c4

0

q2p2

qt2
¼ 0, (4)

where � represents a convolution.
In the framework of generalized functions, assuming that the pressure field is a distribution and recalling that

distributional differentiation is equivalent to a convolution with a derivative of the Dirac delta function
½dð1ÞðtÞ � f ðtÞ ¼ f ð1ÞðtÞ�, the operator can be defined as

LgðtÞ � GðtÞ � dð1ÞðtÞ. (5)

The function GðtÞ represents the causal time domain propagation factor that accounts for causal attenuation, that is, it
governs dispersion in the system to insure causality. Eq. (4) can now be written in terms of GðtÞ as

r2p�
1

c2
0

q2p

qt2
þ

1
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q½GðtÞ � p�

qt
þ

b
r0c4

0

q2p2

qt2
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Note that it is the time domain propagation factor GðtÞ that is required and not ðLgðtÞÞ.
In the frequency domain, propagation in a dispersive medium can be described through a complex propagation factor

kðoÞ ¼ �aðoÞ þ ibðoÞ, (7)

where aðoÞ is the frequency-dependent attenuation and bðoÞ ¼ ðo=c0Þ þ b0ðoÞ is the real wavenumber, with b0ðoÞ, its
dispersive component, given by

b0ðoÞ ¼ o 1

cðoÞ
�

1

c0

� �
. (8)

The complex propagation factor can also be expressed as

kðoÞ ¼ g0ðoÞ þ i
o
c0

. (9)

Here g0ðoÞ ¼ �aðoÞ þ ib0ðoÞ represents the dispersive component of the complex propagation factor. Szabo [3] defined the
causal time domain propagation factor as the inverse Fourier transform of g0ðoÞ

GðtÞ ¼ FT�1fg0ðoÞg, (10)

where t is the retarded time t ¼ ðt � rÞ=c0. Since in a weakly dispersive media aðoÞ and b0ðoÞ are related by causality
through the (K–K) relations (they are the Hilbert transform of each other), then

b0ðoÞ ¼ �Hf�aðoÞg. (11)

This leads to

GðtÞ ¼ �21þðtÞFT�1faðoÞg, (12)

where 1þðtÞ represents the step function defined as [17]

1þ �

0 to0;
1
2 t ¼ 0;

1 t40:

8><
>: (13)

Szabo originally limited the use of the time domain propagation operator to a power law attenuation, and excluding some
values of the exponent, as already noted. Waters et al. [7], using distributional analysis, showed that Eq. (12) is more
general and can be applied to any attenuation form for which an associated causal phase velocity exists.
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4. Finite difference formulation

A one-dimensional numerical solution of Eqs. (2) and (6) was performed using a FDTD representation of Eqs. (2) and (6) that
was explicitly fourth order in both time and space. The second partial of the pressure with respect to time was extended to fourth
order. However, because the usual fourth-order finite difference representation of the second partial derivative would lead to an
unconditionally unstable scheme, a technique given by Cohen [18] based on the ‘‘modified equation approach’’ to obtain fourth-
order accuracy in time was used. This technique, while improving the accuracy in time, preserves the simplicity of the second-
order accurate time-step scheme. This was performed in order that all derivatives have the same order of accuracy as the boundary
conditions which are also fourth order. It was found [10] that lower order boundary conditions did not suppress spurious
reflections at the computational boundary that could contaminate low amplitude signals (i.e. backscattered signals) of interest.
The reader is directed to Ref. [10] for further information and explanation. The temporal derivatives were calculated as follows:
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i Þ. (14)

The first derivative term is associated with the nonlinearity and the third derivative term is the loss term.
The spatial differences were computed using a fourth-order accurate centered differencing scheme

q2p

qx2
¼

1

12Dx2
ð�pn

iþ2 þ 16pn
iþ1 � 30pn

i þ 16pn
i�1 � pn

i�2Þ. (15)

A technique known as the complementary operator method was utilized [19] in the development of the absorbing boundary
conditions (ABC). The details of the derivation of the COM operators are beyond the scope of this paper; the interested reader
should refer to Ref. [19]. This technique was first utilized in electromagnetics where it was shown to yield excellent results [19].
The COM method is a differential equation-based ABC method, and differs from the other common approach of terminating the
grid with the use of an absorbing material. An example of this type of boundary condition is the perfectly matched layer (PML)
method originally proposed by Berenger [20]. The COM requires the summation of two simulations. The first simulation results
from using an ABC that operates on the field in a known manner. The second simulation is performed using the complement of
the ABC. The energy reflected by this complementary ABC has the same amplitude as the original ABC but is opposite in phase.
Thus when the two simulations are averaged the resulting solution is nearly free of all the energy introduced by the ABC. The
COM is based on one-way wave equations such as Higdon’s boundary operators [21].
5. Numerical experiment

The numerical experiment is carried out in one dimension. The input signal is a 1 MHz sinusoidal burst of six cycles
modulated by a Gaussian envelope in time. The numerical grid consists of 1500 points with DX ¼ 0:1 mm. The time increment
is Dt ¼ 10:681 ns. The source is located at X ¼ 3:5 cm. The first receiver is located at X ¼ 5 cm and the second is located at
X ¼ 7 cm. The medium simulated is mammalian liver tissue in which the non-dispersive sound speed is 1600 m s�1 and the
density of the tissue is taken to be 1100 kg m�3. The attenuation is assumed to have a power law dependence

aðoÞ ¼ a0oy ¼ ð2:0976� 10�7 Np m�1 rad�1 s�1Þo1:13. (16)

Fig. 1 displays the attenuation in dB m�1 versus frequency. The causal phase velocity that is associated with
this attenuation is shown in Fig. 2. The truncated source, which is a sinusoid of constant frequency but finite time duration,
has a significant frequency content, as shown in Fig. 3, which depicts the frequency spectrum of the source. The source has a
bandwidth of approximately 1 MHz with a center frequency of 1 MHz. The use of the time domain propagation factor in Eq. (6)
results in each frequency associated with the source having a different attenuation and phase velocity (see Figs. 1 and 2). When
solving Eq. (2), however, the attenuation associated with the peak frequency (1 MHz) (see Eq. (3)) is used, that is, 87:5 dB m�1 or
approximately 10:1 Np m�1. In solving Eq. (6), a maximum of 1000 points is used for the convolution.

Numerical results from the FDTD solutions to Eqs. (2) and (6) at two receiver locations are Fourier transformed into the
frequency domain allowing for the determination of the frequency-dependence of the attenuation and phase velocity,
which are obtained from the following expressions:

aðf Þ ¼
8:68

pðx2; f Þ

pðx1; f Þ

� �

d
, (17)
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Fig. 1. Attenuation versus frequency.

Fig. 2. Phase velocity versus frequency.
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cðf Þ ¼
2pfd

ARGðpðx2; f Þ=pðx1; f ÞÞ
, (18)

where d is the distance in meters separating the two receivers.
In order to compare the effect that the two loss terms have on the propagating signal, the effects of nonlinearity are

removed by setting p0 ¼ 1 Pa. This permits highlighting the effect of each loss term. Utilizing Eqs. (17) and (18), the
attenuation and phase velocity can be extracted for each case and compared to the analytic solution. Fig. 4 compares the
analytic attenuation (from Fig. 1; solid line) to the attenuation extracted from the solution of Eq. (2) (dotted line) and of Eq.
(6) (dashed line). The range of frequencies corresponds to the frequency content of the source (see Fig. 3). The extracted
attenuation from Eq. (6), utilizing the time domain propagation factor, is essentially indistinguishable from the analytic
attenuation, indicating that the time domain propagation factor is introducing the correct amount of loss at each frequency.
The attenuation as a function of frequency based on Eq. (2) crosses the analytic curve at the center frequency of 1 MHz. At
frequencies below the peak frequency, the viscous term produces less attenuation than the causal operator, with the
situation reversed above the peak frequency. There is a frequency squared dependence on attenuation as one would expect
(see Eq. (3)), and indeed for any medium Eq. (2) imposes a frequency squared dependence on the attenuation.
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Fig. 3. Frequency spectrum of source.

Fig. 4. Comparison of extracted to analytic attenuation.

G.V. Norton, R.D. Purrington / Journal of Sound and Vibration 327 (2009) 163–172168
Fig. 5 compares the phase velocity associated with the analytic attenuation to that extracted from the propagated
signals using Eqs. (2) and (6). The phase velocity extracted using the time domain propagation factor (Eq. (6)) again agrees
very well with the analytic values. It is worth emphasizing that while the value of c0 used in both Eqs. (2) and (6) is
1600:0 m s�1, the time domain propagation factor associates the proper phase velocity with each frequency automatically,
but in the time domain. The phase velocity extracted using Eq. (2), the dotted line in Fig. 5, is the same at all frequencies,
since there is no dispersion in this case.

Fig. 6 compares the time series at the second receiver (X ¼ 7 cm), showing that the signal propagated via Eq. (6) suffers
from dispersion (arrives later and has spread out in time) while the signal associated with Eq. (2) does not.

In order to investigate the effects of nonlinearity along with attenuation, the source pressure amplitude p0 is now set to
5.0 MPa. The nonlinear term (final term) in Eqs. (2) and (6) now has an impact on the propagated field. Fig. 7 compares the
time series for three cases: first, with no attenuation (solid line); second, when the viscous term (Eq. (2)) is used (dotted
line); and lastly using Eq. (6), with the time domain propagation factor (dashed line). Comparing Figs. 7 to 6 the effects of
the nonlinear term are easily observed. The time series for the zero attenuation case shows a steepening of the signal as
well as several turning points, not observed in Fig. 6. When attenuation is included, whether from the viscous term or from
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Fig. 5. Comparison of extracted to analytic phase velocity.

Fig. 6. Comparison of time series.
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the time domain propagation factor, these turning points are smoothed and the overall signal amplitude is reduced. The
smoothing is greater with the viscous term (Eq. (2)) than when using the time domain propagation factor (Eq. (6)). The
dispersive characteristic of the time series using the time domain propagation factor is clearly observed.

Fig. 8 compares the signal spectrum at the second receiver. Note that in this nonlinear case, the unattenuated signal now
has energy in the first two harmonics of the original signal (2 and 3 MHz). When attenuation is included, the amplitude at
the source frequency is reduced as are the amplitudes of the two harmonics. While the signal amplitudes are nearly the
same at the source frequency for the two attenuation cases, their amplitudes at the two harmonics are not. The result using
the time domain propagation factor forces more energy into the two harmonics than when using the viscous term.

To further investigate the effects of the different attenuation terms, the following comparisons are made. The acoustic
field using the two different loss terms is integrated over time at both receiver locations (X ¼ 5 and 7 cm). These values are
now compared to the integrated value for the lossless case, with the results for the signal loss (SL) expressed in dB

SLðdBÞ ¼ 10 log

R
ðplosstermðxrec; tÞ � plosstermðxrec; tÞÞdtR
ðpnolossðxrec; tÞ � pnolossðxrec; tÞÞdt

� �
. (19)
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Fig. 7. Nonlinear time series.

Fig. 8. Signal spectrum.
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This loss (SL) is compared to the analytic value, using the attenuation at 1 MHz and the distance from the source location to
each receiver. The signal loss at each receiver is

SL1 ¼ 87:5 dB m�1 � 0:015 m ¼ 1:31 dB,

SL2 ¼ 87:5 dB m�1 � 0:035 m ¼ 3:06 dB. (20)

Table 1, below, compares the losses for three different values of p0. The linear case is represented by p0 ¼ 1 Pa. The amount
of signal loss using either loss term results in a good agreement with the analytic expression. However, when p0 is
increased so that the nonlinear term becomes important, the two techniques begin to differ.

The approximate location of shock formation can be determined from the following expression [22]:

x̄ ¼
rc2

bkp0
. (21)
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Table 1
Signal loss at second receiver for various values of p0.

p0 Viscous term (dB) Causal operator (dB)

1 Pa 3.08 3.03

5 MPa 3.45 3.28

10 MPa 4.47 3.97

Table 2
Signal loss at first receiver for various values of p0.

p0 (MPa) Viscous term (dB) Causal operator (dB)

5 1.39 1.32

10 1.6 1.44

G.V. Norton, R.D. Purrington / Journal of Sound and Vibration 327 (2009) 163–172 171
For p0 ¼ 5 MPa the location of shock formation is 6.1 cm, and for p0 ¼ 10 MPa it is at 4.8 cm. Consequently, when
p0 ¼ 10 MPa, shock formation begins before the signal arrives at either receiver location. This may account for the increase
in the losses seen in Table 1. Table 2 displays the losses determined from Eq. (14) at the first receiver location, X ¼ 5 cm.

One sees that the approximate location of shock formation when p0 ¼ 5 MPa is beyond the first receiver, and in this case
as can be seen from Table 2, losses deriving from either loss term are close to the analytic value. On the other hand, when
p0 ¼ 10 MPa shock formation occurs before the first receiver and the losses determined by either loss term exceeds the
analytic value, with the losses determined due to the viscous term (Eq. (2)) exceeding that due to the use of the time
domain propagation factor (Eq. (6)).
6. Concluding remarks

Two variations of the Westervelt equation including attenuation were solved using the method of finite differences. In
the first (viscous) case, the attenuative term employed the third time derivative of the pressure, while the second case
utilized a time domain propagation factor that introduces both attenuation and dispersive effects into the solution. It has
been shown that the time domain propagation factor imparts the correct phase velocity and attenuation to the signal.
When the nonlinear term influences the signal, the attenuation terms tend to diminish the nonlinear affect. The energy that
is pumped into the higher harmonics of the source differs depending on whether the viscous term or the time domain
propagation factor is used, with the time domain propagation factor putting more energy in the higher harmonics than the
viscous term. This work was performed as a proof of concept for utilizing the time domain propagation factor in a nonlinear
equation to numerically take into account the dispersive characteristics of a medium. In the next stage of development the
authors are extending this technique to two dimensions which will allow for model–data comparisons with realistic
dispersive media, i.e. mammalian tissue.

References

[1] D.T. Blackstock, Generalized Burgers equation for plane waves, Journal of the Acoustic Society of America 77 (1985) 2050–2053.
[2] T.L. Szabo, Time domain nonlinear wave equations for lossy media, Proceedings of the 13th International Symposium on Nonlinear Acoustics, Bergen,

June 1993, pp. 89–94.
[3] T.L. Szabo, Time domain wave equations for lossy media obeying a frequency power law, Journal of the Acoustic Society of America 96 (1994) 491–500.
[4] T.L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power law, Journal of the Acoustic Society of America 97 (1995) 14–24.
[5] T.L. Szabo, J. Wu, A model for longitudinal and shear wave propagation in viscoelastic media, Journal of the Acoustic Society of America 107 (2000)

2437–2446.
[6] R.D.L. Krönig, On the theory of dispersion of X-rays, Journal of the Optical Society of America 12 (1926) 547–557.
[7] K.R. Waters, M.S. Hughes, G.H. Brandenburger, J.G. Miller, On a time-domain representation of the Kramers–Krönig dispersion relations, Journal of the

Acoustic Society of America 108 (2000) 2114–2119.
[8] G.V. Norton, J.C. Novarini, Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media, Journal of the

Acoustic Society of America 113 (2003) 3024–3031.
[9] G.V. Norton, J.C. Novarini, Including dispersion and attenuation in time domain modeling of pulse propagation in spatially-varying media, Journal of

Computational Acoustics 12 (2004) 501–519.
[10] G.V. Norton, J.C. Novarini, Time domain modeling of pulse propagation in non-isotropic dispersive media, Mathematics and Computers in Simulation

69 (2005) 467–476.
[11] G.V. Norton, J.C. Novarini, Finite-difference time-domain simulation of acoustic propagation in dispersive medium: an application to bubble clouds in

the ocean, Computer Physics Communications 174 (2006) 961–965.
[12] G.V. Norton, J.C. Novarini, Modeling ultrasonic transient scattering from biological tissues including their dispersive properties directly in the time

domain, Molecular and Cellular Biomechanics 4 (2007) 75–85.
[13] G.V. Norton, Finite-difference time-domain simulation of acoustic propagation in heterogeneous dispersive medium, Numerical Methods for Partial

Differential Equations 23 (2007) 1420–1428.



ARTICLE IN PRESS

G.V. Norton, R.D. Purrington / Journal of Sound and Vibration 327 (2009) 163–172172
[14] G.V. Norton, Comparison of homogeneous and heterogeneous modeling of transient scattering from dispersive media directly in the time domain,
Mathematics and Computers in Simulation, accepted for publication.

[15] P.M. Jordan, C.I. Christov, A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves, Journal of Sound and
Vibration 281 (2005) 1207–1216.

[16] M.F. Hamilton, C.L. Morfey, Model equations, in: M.F. Hamilton, D.T. Blackstock (Eds.), Nonlinear Acoustics, Academic Press, New York, 1997, pp. 41–63.
[17] R.N. Bracewell, The Fourier Transform and its Applications, second ed., McGraw-Hill, New York, 1986, pp. 57–61.
[18] G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Springer, Berlin, 2001, pp. 45–50.
[19] J.B. Schneider, O.M. Ramahi, The complementary operators method applied to acoustic finite-difference time-domain simulations, Journal of the

Acoustic Society of America 104 (1998) 686–693.
[20] J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics 114 (1994) 185–200.
[21] R.L. Higdon, Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation, Mathematics of Computation 47

(1986) 437–459.
[22] A.D. Pierce, Acoustics. An Introduction to its Physical Principles and Applications, Acoustical Society of America, New York, 1989, pp. 566–617.


	The Westervelt equation with viscous attenuation versus a causal propagation operator: A numerical comparison
	Introduction
	Westervelt equation for non-dispersive and dispersive media
	The causal time domain propagation factor
	Finite difference formulation
	Numerical experiment
	Concluding remarks
	References




